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Abstract

The exact description of the overall behavior of composites with nonlinear dissipative phases requires an infinity of

internal variables. Approximate models involving only a finite number of those can be obtained by considering a

decomposition of the microscopic anelastic strain field on a finite set of transformation fields. The Transformation Field

Analysis of Dvorak [Proc. R. Soc. Lond. A 437 (1992) 311] corresponds to piecewise uniform transformation fields. The

present theory considers nonuniform transformation fields. Comparison with numerical simulations shows the accuracy

of the proposed model.
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1. Introduction

The present study is devoted to the prediction of the effective mechanical behavior of composite ma-

terials comprised of individual constituents which are ‘‘standard’’ materials in a generalized sense, the most

common standard materials being elastoviscoplastic or elastoplastic.

The theory of Generalized Standard Materials (GSM), proposed in the seminal work of Halphen and

Nguyen (1975), is an elegant and powerful generalization of the classical theory of (visco)plasticity. It has

been successfully applied and extended to complex material behaviors (Germain et al., 1983; Lemaitre and

Chaboche, 1988; Lubliner, 1990; Maugin, 1992). The theory relies on two fundamental concepts, the notion

of internal variables, and the notion of thermodynamic potentials, the free energy w and the dissipation
potential u, endowed with specific mathematical properties (convexity). The internal variables a at time t
are supposed to contain all the relevant information about the material history for times s6 t. The choice of
these variables depends obviously on the material under consideration.

It has been known for some time that the structure of GSM is preserved under change of scales. In other

words the effective behavior of composites made of constituents which are GSM, has itself a GSM structure

but with infinitely many internal variables which are the fields of local internal variables. This fairly
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theoretical result is recalled in Section 2 following the presentation of Suquet (1985), but similar ideas were

already present in different forms in the works of Bui (1970), Rice (1970) and Mandel (1972) among others.

This general result shows the complexity of nonlinear homogenization, but is of very limited practical

use. In order to derive constitutive models of the effective behavior of composites which are both useable
and reasonably accurate, one has to resort either to bounding (variational) principles or to other types of

approximation.

Regarding variational methods, significant progress has been made recently in deriving bounds and

estimates for nonlinear composites from variational principles (Talbot and Willis, 1985; Ponte Casta~nneda,
1991, 1992, 1996; Willis, 1991; Suquet, 1992, 1993; Olson, 1994; Ponte Casta~nneda and Suquet, 1997).

However, most of these studies apply only to nonlinear constitutive behaviors deriving from a single po-

tential, such as nonlinear elasticity or viscoplasticity when elastic effects are neglected. The question of

nonlinear constitutive behaviors governed by two potentials corresponding respectively to reversible and
irreversible aspects of the behavior is still widely open.

Regarding approximate schemes, the Transformation Field Analysis (TFA) proposed by Dvorak and

coworkers, initially for elastoplastic composites (Dvorak and Rao, 1976; Dvorak and Bahei-El-Din, 1987;

Dvorak et al., 1988; Teply and Dvorak, 1988), is an elegant way of reducing the number of macroscopic

internal variables by assuming the microscopic fields of internal variables to be piecewise uniform. Its

formalization by Dvorak and Benveniste (1992) and Dvorak (1992) has provided a theoretical basis for

further work with more complex behavior (thermoviscoplasticity, damage) by Dvorak et al. (1994) and by

other groups (Kattan and Voyiadjis, 1993; Chaboche et al., 2001; Fish et al., 1997; Fish and Yu, 2002), this
list being by no means exhaustive.

The TFA has been used by Fish et al. (1997) to analyse a composite structure by the FEM. These

authors found a good agreement between the ‘‘two-point averaging scheme’’ (plain TFA with a uniform

plastic strain in the matrix) and a more refined computation (‘‘multi-point incremental homogenization’’).

Despite this interesting observation, it has long been recognized by Dvorak himself (Teply and Dvorak,

1988) and confirmed by others (Suquet, 1997; Chaboche et al., 2001; Michel et al., 2000) that the appli-

cation of the TFA to two-phase systems may require, under certain circumstances, a subdivision of each

individual phase into several (and sometimes numerous) sub-domains to obtain a satisfactory description of
the effective behavior. As a consequence, the number of internal variables needed in the effective consti-

tutive relations, although finite, is prohibitively high. The need for a finer subdivision of the phases stems

from the intrinsic nonuniformity of the plastic strain field which can be highly heterogeneous even within a

single material phase. In order to reproduce accurately the actual effective behavior of the composite, it is

important to capture correctly the heterogeneity of the plastic strain field.

This observation has motivated the method proposed in a previous study (Michel et al., 2000) and in the

present study with the aim of reducing the number of macroscopic internal variables by considering non-

uniform plastic strain fields. More specifically the plastic strain within each phase is decomposed on a finite
set of plastic modes which can present large deviations from uniformity. The plastic modes considered in

Michel et al. (2000) were scalar modes. The present study is an extension of the theory to tensorial plastic

modes. The method is exposed in Section 4. It is illustrated in Section 5 where its merits are assessed by

comparison with the TFA and with complete numerical simulations.
2. Constitutive relations defined by two thermodynamic potentials

2.1. Generalized standard materials

It is assumed that the constituents of the composite are GSM in the sense of Halphen and Nguyen (1975)
or Germain et al. (1983). At each material point x the state variables are the (infinitesimal) deformation
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tensor e and additional internal variables a which describe irreversible phenomena (plasticity, viscoplas-

ticity, damage,. . .). The evolution equations governing the behavior of the material are derived from two

thermodynamic potentials. The free energy w is a convex functions of its arguments which defines (through

the state laws) the stress r and the forces A available in the system to drive the dissipative mechanisms
State laws : r ¼ ow
oe

ðe; aÞ; A ¼ � ow
oa

ðe; aÞ: ð1Þ
The rate of the internal variables and the associated forces are related by means of the dissipation potential

u or equivalently by means of the force potential w (dual to u) through the complementary laws
Complementary laws : A ¼ ou
o _aa

ð _aaÞ or equivalently _aa ¼ ow
oA

ðAÞ: ð2Þ
w and u are dual convex potentials.

2.2. A sub-class of generalized standard materials (GSM2)

With the classical theories of elastoplasticity and elastoviscoplasticity in mind, attention can be restricted

to an important sub-class of GSM. The internal variables consist of the anelastic strain ean and additional

state variables b. The free energy is split into three terms, a purely elastic energy not affected by the

variables b and a stored energy consisting of two terms, the energy stored in the kinematic hardening of the

material and the energy stored in other mechanisms and described by the variables b
a ¼ ðean; bÞ; wðe; aÞ ¼ 1

2
ðe� eanÞ : L : ðe� eanÞ þ wanðeanÞ þ wbðbÞ:
The associated forces are
r ¼ ow
oe

ðe; aÞ ¼ L : ðe� eanÞ;

Aan ¼ � ow
oean

ðe; aÞ ¼ r� X ; X ¼ owan

oean
ðeanÞ;

Ab ¼ � ow
ob

ðe; aÞ ¼ � owb

ob
ðbÞ:

9>>>>>=
>>>>>;

ð3Þ
X is usually called the back stress.

The constitutive relations (3) can be further simplified when the material under consideration is iso-
tropic. When this is the case:

(a) The elastic moduli L can be expressed in terms of two materials parameters, the bulk modulus k and the

shear modulus G.
(b) The energy function wan is a function of eaneq
wanðeanÞ ¼ wanðeÞ e ¼ eaneq ¼ 2

3
ean : ean

� �1=2

: ð4Þ
(c) The force potential is a function of Aan
eq and Ab
wðAan;AbÞ ¼ wða;AbÞ; a ¼ Aan
eq ¼ 3

2
Aan

dev : A
an
dev

� �1=2

; ð5Þ
where Aan
dev is the deviator of Aan. The forms (4) and (5) of the potentials lead to significant simplifi-

cations for the constitutive relations
X ¼ 2

3

owan

oe
ðeaneqÞ

ean

ean
; _eean ¼ 3

2

ow
oa

ðAan
eq ;A

bÞA
an
dev

Aan : ð6Þ

eq eq
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Example: plasticity and viscoplasticity. Several examples of constitutive relations in the form (1) and (2)

can be found in Germain et al. (1983), Lemaitre and Chaboche (1988), Maugin (1992). The classical ex-

ample of viscoplasticity (or plasticity) with kinematic and isotropic hardening fits in the class GSM2 and is

worth mentioning explicitely. For this class of materials, the internal variables are the anelastic (plastic or
viscoplastic) strain and a scalar variable modelling the effect of isotropic hardening
a ¼ ðean; pÞ:

The free energy w reads as
wðe; ean; pÞ ¼ 1

2
ðe� eanÞ : L : ðe� eanÞ þ 1

2
Hean : ean þ wpðpÞ; ð7Þ
where L is the fourth-order tensor of elastic moduli, H is the kinematic hardening modulus, wan ¼
ð1=2ÞHean : ean and wp are energies which are stored in the kinematic and isotropic hardening of the material.
The state laws (1) defining the stress and the forces associated to the internal variables read in this case
r ¼ ow
oe

ðe; aÞ ¼ L : ðe� eanÞ;

Aan ¼ � ow
oean

ðe; aÞ ¼ r� X ; X ¼ Hean;

Ap ¼ � ow
op

ðe; aÞ ¼ � owp

op
ðpÞ ¼ �RðpÞ:

9>>>>>=
>>>>>;

ð8Þ
In classical viscoplasticity the force potential reads as
wðAan;ApÞ ¼ r0 _ee0
nþ 1

ðAan
eq þApÞþ

r0

" #nþ1

¼ r0 _ee0
nþ 1

ððr� X Þeq � RðpÞÞþ

r0

" #nþ1

; ð9Þ
and the complementary laws are
_eean ¼ 3

2
_pp

s� X

ðr� X Þeq
; _pp ¼ _ee0

ððr� X Þeq � RðpÞÞþ

r0

" #n
;

where s is the stress deviator.

2.3. Local problem for composite materials

2.3.1. Notations

Consider a representative volume element (r.v.e) V of a composite material comprised of N homogeneous

phases or subdomains Vr. By subdomain it is understood that a single mechanical phase can be subdivided
into several subdomains considered as different phases, although their material properties are identical.

vðrÞðxÞ and cr denote the characteristic function and the volume fraction of phase r
vðrÞðxÞ ¼ 1 if x 2 Vr;
0 otherwise;

�
cr ¼ hvðrÞi where hf i ¼ 1

jV j

Z
V
f ðxÞdx:
The compact notations �ff and �ffr will be used to denote the average of a field f in the entire r.v.e. V and in

each phase Vr, respectively
�ff ¼ hf i ¼
XN
r¼1

cr�ffr; �ffr ¼ hf ir ¼
1

jVrj

Z
Vr

f ðxÞdx:
The r.v.e is subjected to an average loading characterized by a given path in the space of overall strain or
stress. Attention is limited to isothermal evolutions and infinitesimal deformations. The overall stress �rr and

the overall strain �ee are the averages of their local counterparts r and e
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�rr ¼ hri; �ee ¼ hei: ð10Þ
The local stress and strain fields are determined through the resolution of the local evolution problem

posed for the r.v.e. and consisting of equilibrium equations, boundary conditions and constitutive relations.
The boundary conditions are assumed to be such that Hill�s micro–macro localization condition is satisfied:

for any compatible strain field e and any stress field r in equilibrium, both meeting the boundary conditions

imposed on the boundary of the r.v.e., the following equality holds:
hr : ei ¼ hri : hei: ð11Þ
Examples of boundary conditions meeting (11) include uniform strains, uniform stresses, periodicity
conditions (see Suquet (1987) for more details). Periodicity boundary conditions will be assumed in the

following.
2.4. Generalized structure of the overall constitutive relations for composite materials

As shown in Suquet (1985, 1987), the ‘‘standard’’ structure of the constitutive relations (1) and (2) is

preserved by change of scales at the expense of introducing an infinite number of internal variables. Let us

briefly describe how this (highly theoretical) result is obtained.
The internal variables at the macroscopic scale are the fields of internal variables at each microscopic

location x 2 V
~aa ¼ faðxÞgx2V : ð12Þ
Since the free energy is an additive quantity, the overall free energy of the composite is the average of the

microscopic free energy
~wwð�ee; ~aaÞ ¼ hwðeðxÞ; aðxÞÞi: ð13Þ
The forces associated with the state variables read
o~ww
o�ee

ð�ee; ~aaÞ; ~AA ¼ fAxgx2V ; Ax ¼ � o~ww
oaðxÞ ð�ee; ~aaÞ: ð14Þ
The first force is nothing else than the macroscopic stress. Indeed, using Hill�s lemma, one gets that
o~ww
o�ee

ð�ee; ~aaÞ ¼ ow
oe

ðe; aÞ : oe
o�ee

� �
¼ r :

oe

o�ee

� �
¼ hri : oe

o�ee

� �
¼ �rr;
since
hei ¼ �ee and thus
oe

o�ee

� �
¼ I :
Similarly, the set of forces fAxgx2V coincide with the local field of forces fAðxÞgx2V . The effective force

potential reads
~wwð ~AAÞ ¼ hwðAÞi: ð15Þ
With the choices (12), (13), (15), the effective constitutive relations of the composite have a generalized

standard structure
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State variables : �ee; ~aa ¼ faðxÞgx2V ;

State laws : �rr ¼ o~ww
o�ee

ð�ee; ~aaÞ; ~AA ¼ � o~ww
o~aa

ð�ee; ~aaÞ;

Complementary laws : _~aa~aa ¼ o ~ww

o ~AA
ð ~AAÞ:

ð16Þ
The interest of this result is essentially theoretical since it shows that the structure of generalized stan-

dard materials is preserved under change of scale. But the result itself is hardly applicable since the number

of internal variables is infinite. The aim of the next sections is to explore different models approximating the

exact model but involving only a finite number of internal variables.
2.5. Green’s operator C

When the state variables are frozen (no evolution of the system), the stress and strain fields in the r.v.e.

solve the following linear elastic problem, with appropriate boundary conditions:
rðxÞ ¼ LðxÞ : ðeðxÞ � eanðxÞÞ; divðrðxÞÞ ¼ 0; hei ¼ �ee: ð17Þ
�ee and eanðxÞ being known, the solution e of this problem can be obtained by a mere application of the

superposition principle. Consider first the case where ean is identically 0. Problem (17) is then a standard

elasticity problem and its solution can be expressed by means of the the elastic strain-localization tensor

AðxÞ as
eðxÞ ¼ AðxÞ : �ee: ð18Þ
Consider next the case where �ee ¼ 0 and eanðxÞ is arbitrary. Problem (17) can then be written as an elasticity

problem with eigenstress s
rðxÞ ¼ LðxÞ : eðxÞ þ sðxÞ; divðrðxÞÞ ¼ 0; hei ¼ 0; ð19Þ
where sðxÞ ¼ �LðxÞ : eanðxÞ. The solution of (19) can be expressed by means of the nonlocal elastic Green

operator Cðx; x0Þ of the nonhomogeneous elastic medium as
eðxÞ ¼ �hC � siðxÞ; where C � sðxÞ ¼def 1

jV j

Z
V
Cðx; x0Þ : sðx0Þdx0: ð20Þ
It follows from the superposition principle applied to (18) and (20) that the solution of (17) reads as
eðxÞ ¼ AðxÞ : �eeþ 1

jV j

Z
V
Dðx; x0Þ : eanðx0Þdx0 ¼ AðxÞ : �eeþD � eanðxÞ; ð21Þ
where the nonlocal operator Dðx; x0Þ ¼ Cðx; x0Þ : Lðx0Þ gives the strain at point x created by a transfor-

mation strain eanðx0Þ at point x0.
3. The classical transformation field analysis (TFA)

The ‘‘Transformation Field Analysis’’ (TFA) of Dvorak (1992) can be used to reduce the number of

internal variables. Although initially proposed in a slightly different spirit, the TFA can be adapted to the
above described class of generalized standard materials (GSM2). The ‘‘transformation fields’’ are, in the

present case, the fields of internal variables a.
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3.1. Uniform transformation fields

This application involves two steps and two levels of approximation.

H1. The internal variables a, including the anelastic strain, are assumed to be piecewise uniform within

each individual phase or subdomain:
eanðxÞ ¼
XN
r¼1

eanr vðrÞðxÞ; bðxÞ ¼
XN
r¼1

brv
ðrÞðxÞ: ð22Þ
The ar ¼ ðeanr ; brÞ are the new internal variables (and there is only a finite number of them). These variables

being fixed, one can make use of the equilibrium equations and state equations to compute the average

strain in each subdomain. Usually the problem to be solved amounts to a problem with transformation
strains for a N-phase composite material. This problem can be solved (at least theoretically) and the result

can be expressed as a linear relation between the internal variables ar�s and the average strain (see Section

3.2 for more details)
�eer ¼ heir ¼ Ar : �eeþ
XN
s¼1

Drs : e
an
s ; r ¼ 1; . . . ;N ; ð23Þ
where Ar and Drs are tensors depending on the linear elastic properties of the individual phases (see Section

3.2 for details). Then, since the stress and the elastic strain are linearly related, the average stress in each

individual phase and in the composite can be computed
�rrr ¼ hrir ¼ LðrÞ : ð�eer � eanr Þ; �rr ¼
XN
r¼1

cðrÞ�rrr: ð24Þ
It remains to specify the evolution of the internal variables ar ¼ ðeanr ; brÞ. These evolution equations

cannot be deduced from the exact evolution equations (2). A second level of approximation is required.

H2. The evolution of the internal variables ar follows exactly the constitutive relations in phase r the strain
being estimated as the average strain in phase r. In other words, the forces Ar being defined as
Ar ¼ � owðrÞ

oa
ð�eer; arÞ: ð25Þ
The evolution equations for the internal variables are
_aar ¼
owðrÞ

oA
ðArÞ: ð26Þ
3.2. Influence tensors Drs

Using the decomposition (22) into (21), the average strains �eer in the different subdomains are found as
�eer ¼ Ar : �eeþ
XN
s¼1

Drs : e
an
s ; r ¼ 1; . . . ;N ; ð27Þ
where the fourth-order tensors Ar and Drs are the average strain-localization tensors and influence tensors
(Dvorak (1992))
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Ar ¼
1

cr

1

jV j

Z
V
AðxÞvrðxÞdx
and
Drs ¼
1

cr

1

jV j
1

jV j

Z
V

Z
V
vrðxÞCðx; x0Þ : Lðx0Þvsðx0Þdx0 dx:
This completes the proof of (23).

The average stress in phase r is
�rrr ¼ LðrÞ : Ar : �eeþ LðrÞ :
XN
s¼1

Drs : e
an
s

 
� eanr

!
; r ¼ 1; . . . ;N ; ð28Þ
and the total average stress reads
�rr ¼
XN
r¼1

cr�rrr ¼ ~LL : �eeþ
XN
r¼1

crL
ðrÞ :

XN
s¼1

ðDrs � drsÞ : eans ; ð29Þ
with
~LL ¼
XN
r¼1

crL
ðrÞ : Ar:
In summary the system of equations defining the effective behavior of the composite consists of (29)

complemented with evolution equation for the internal variables
_eeanr ¼ owðrÞ

oAan ðAan
r ;Ab

r Þ; _bbr ¼
owðrÞ

oAb
ðAan

r ;Ab
r Þ; ð30Þ
where
Aan
r ¼ �rrr � X r; X r ¼

oðwanÞðrÞ

oean
ðeanr Þ; Ab

r ¼ � oðwbÞðrÞ

ob
ðbrÞ: ð31Þ
4. Nonuniform transformation field analysis (NTFA)

The application of the classical TFA to two-phase systems using plastic strains which are uniform on
each of the two phases yields very poor predictions of the overall behavior of the composite (Suquet, 1997).

Dvorak et al. (1994) have obtained better results by subdividing each phase into several subdomains (at

least those undergoing plastic deformation). The need for a finer subdivision of the phases stems from the

intrinsic nonuniformity of the plastic strain field which can be highly heterogeneous even within a single

material phase. Unfortunately, as the subdivision is refined, the number of internal variables needed in the

effective constitutive relations, although finite, increases prohibitively.

The aim of this section is to build the nonuniformity of the plastic strain field in the transformation fields

themselves.

4.1. Nonuniform transformation fields

In order to reduce the number of internal variables, we make the approximate assumption that

H3. The field of anelastic strains is a finite combination of modes lðkÞ:
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eanðxÞ ¼
XM
k¼1

eank lðkÞðxÞ: ð32Þ
A direct analogy with crystal plasticity can be drawn from (32). lðkÞ corresponds to the kth slip system in the

terminology of crystal plasticity while eank corresponds to the magnitude of the slip on this system. With this

analogy in mind, it is expected that the ‘‘slip’’ on the kth ‘‘system’’ will depend on the ‘‘resolved shear

stress’’ on this ‘‘system’’, i.e. on r : lðkÞ.

However, unlike crystal plasticity and unlike the classical transformation field analysis, the modes lðkÞ

are nonuniform (not even piecewise uniform) and can depend on the position x. They are meant to capture

the salient features of the plastic flow modes. They are determined either analytically or numerically. Their

number, M , can be different (larger or smaller) from the number N of phases. For incompressible plasticity
(the case here), the modes lðkÞ are traceless tensor fields. In addition, in order for the eank to be homogeneous

to a plastic strain, a normalization condition is imposed
lðkÞ
eq

D E
¼ 1: ð33Þ
We further assume that the modes have their support entirely contained in a single material phase. This

assumption makes it possible to define vðkÞ;wðkÞ;LðkÞ;wðkÞ; . . . for k varying from 1 to M (and not only to N )

as the characteristic function, free energy, elastic moduli and force potential of the phase in which the

support of the shape function lðkÞ is contained.
4.2. Influence factors for the NTFA

The constitutive relations are conveniently expressed in terms of the following ‘‘generalized’’ stress, back

stress, strain and plastic strain:
sk ¼ hr : lðkÞi; xk ¼ hX : lðkÞi; ek ¼ he : lðkÞi; eank ¼ hean : lðkÞi: ð34Þ

Under the approximation (32), (21) becomes
eðxÞ ¼ AðxÞ : �eeþ
XM
‘¼1

ðD � lð‘ÞÞðxÞean‘ : ð35Þ
Upon multiplication of Eq. (35) by lðkÞ and averaging over V , one obtains
ek ¼ ak : �eeþ
XM
‘¼1

DN
k‘e

an
‘ ; ð36Þ
where the second-order tensors ak and the influence factors DN
lk‘ (N stands for NTFA) are defined as
ak ¼ hAT : lðkÞi; DN
k‘ ¼ hlðkÞ : D � lð‘Þi: ð37Þ
Then, since the elastic moduli of the phases are isotropic, characterized by a bulk modulus kðrÞ and a shear

modulus GðrÞ, the ‘‘resolved shear stress’’ sk are given by
sk ¼ 2GðkÞðek � eank Þ: ð38Þ

Remark. Note that the set feank g, k ¼ 1; . . . ;M can be replaced by the set feank g k ¼ 1; . . . ;M defined in

(34), since
eank ¼
XM
‘¼1

gk‘ean‘ ; where gk‘ ¼ hlðkÞ : lð‘Þi: ð39Þ
The modes are chosen such that the second order tensor g is invertible which permits to invert (39).
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4.3. State laws and complementary laws

It remains to choose the state variables at the macroscopic level and to formulate the state laws and the

complementary laws. As in the classical TFA, the decomposition of the plastic strain (32) instead of (22) is
not sufficient to close the model. The formulation of the evolution equations for the state variables requires

an approximation analogous to assumption H2 in Section 3. There are several ways in which this ap-

proximation can be made and we will describe two of them.

4.3.1. Uncoupled model

First, we have to specify the macroscopic state variables of the model. At each mode lðkÞ is associated a

plastic strain eank by means of the decomposition (32).

The field of the internal variables bðxÞ is reduced to a set of tensorial variables bk, k ¼ 1; . . . ;M asso-
ciated with each mode. The reduced macroscopic state variables of the model are the overall strain �ee and the

set of all the eank �s, and bk �s, k varying from 1 to M
State variables : ð�ee; ~aaÞ; ~aa ¼ feank ; bkgk¼1;...;M : ð40Þ
Part of the state laws are given by (38). To derive the other state equations, we multiply the first equation in

(6) by lðkÞ and average over V
xk ¼ hX : lðkÞi ¼ 2

3

owan

oe
ðeaneqÞ

ean : lðkÞ

eaneq

* +
: ð41Þ
Since lðkÞ is supported in a single phase, wan can be replaced by ðwanÞðkÞ without loss of generality. To further

simplify this relation we replace eaneq by jeank j and we get
xk ¼
2

3

oðwanÞðkÞ

oe
ðeank Þ he

an : lðkÞi
jeank j ¼ 2

3

oðwanÞðkÞ

oe
ðeank Þ eank

jeank j : ð42Þ
The other state equations define the forces associated with bk
Ab
k ¼ � oðwbÞðkÞ

ob
ðbkÞ: ð43Þ
To derive the complementary laws we multiply the second equation in (6) by lðkÞ and average over V
_eeank ¼ h_eean : lðkÞi ¼ 3

2

ow
oa

ðAan
eq ;A

bÞA
an : lðkÞ

Aan
eq

* +
: ð44Þ
Since lðkÞ is supported in a single phase, we can replace w by wðkÞ. To further simplify this relation we replace

Aan
eq by jAan

k j and Ab by Ab
k and we get
_eeank ¼ 3

2

owðkÞ

oa
ðAan

k ;Ab
k Þ

Aan
k

jAan
k j : ð45Þ
The evolution equations for the bk are taken in standard form
_bbk ¼
owðkÞ

oAb
ðjAan

k j;Ab
k Þ: ð46Þ
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In summary, the constitutive relations for the uncoupled model are
Aan
k ¼ sk � xk; sk given by ð38Þ;

xk ¼
2

3

oðwanÞðkÞ

oe
ðeank Þ eank

jeank j ;

Ab
k ¼ � oðwbÞðkÞ

ob
ðbkÞ;

_eeank ¼ 3

2

owðkÞ

oa
ðjAan

k j;Ab
k Þ

Aan
k

jAan
k j ;

_bbk ¼
owðkÞ

oAb
ðjAan

k j;Ab
k Þ:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð47Þ
This system of differential equations is solved along a prescribed path, either in the space of macroscopic

stresses or in the space of macroscopic strains. The resolution of the system yields the history of the eank �s
from which the history of the eank �s can be obtained by inversion of (39).

Finally, once the internal variables eank are determined, the effective constitutive relations for the com-
posite are obtained by averaging the stress field which results from (3), (32) and (35)
�rr ¼ ~LL : �eeþ
XM
k¼1

ðhL : D � lðkÞi � hL : lðkÞiÞeank : ð48Þ
The tensors hL : D � lðkÞi and hL : lðkÞi are computed once for all.

4.3.2. Coupled model

Depending on the level of accuracy that one wants to reach, several modes have to be introduced for

each individual phase. As a consequence the number of internal variables can be too high. It is possible to

reduce further this number by attaching an internal variable br to each phase and not to each mode and by

coupling the different modes supported by the same phase. The resulting coupled model goes as follows.

The state variables are the plastic strains eank �s on each mode, k varying from 1 to M and the br, r varying
from 1 to N
State variables : ð�ee; ~aaÞ; ~aa ¼ feank ; gk¼1;...;M ; fbrgr¼1;...;N : ð49Þ

Then, coming back (41) we note that since lðkÞ is supported by a single phase r, w can be replaced by wðkÞ

without loss of generality. Then eaneq is approximated by jeank j and b is approximated by br to get
xk ¼
2

3

oðwanÞðkÞ

oe
ðeank Þ eank

jeank j : ð50Þ
The rest of the state equations permits to define the forces associated with br
Ab
r ¼ � oðwbÞðrÞ

ob
ðbrÞ: ð51Þ
Then, coming back to (44), w is replaced by wðkÞ, Aan
eq is replaced by
aanr ¼
XMðrÞ

k¼1

jAan
k j2

 !1=2

; where M ðrÞ is the number of modes in phase r;
and Ab by Ab
r . We finally obtain
_eeank ¼ 3

2

owðkÞ

oa
ðaanr ;Ab

r Þ
Aan

k

aanr
: ð52Þ
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The evolution equations for the br are given in standard form
_bbr ¼
owðrÞ

oAb
ðaanr ;Ab

r Þ: ð53Þ
In summary the constitutive relations for the coupled model are
Aan
k ¼ sk � xk; sk given by ð38Þ;

xk ¼
2

3

oðwanÞðkÞ

oe
ðeank Þ eank

jeank j ;

Ab
r ¼ � oðwbÞðrÞ

ob
ðbrÞ;

_eeank ¼ 3

2

owðkÞ

oa
ðaanr ;Ab

r Þ
Aan

k

aanr
; aanr ¼

XMðrÞ

k¼1

jAan
k j2

 !1=2

;

_bbr ¼
owðrÞ

oAb
ðaanr ;Ab

r Þ;

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

ð54Þ
where r is the phase containing the support of lðkÞ.
4.4. Two-phase composites

All the examples discussed in Section 5 concern two-phase composites made of linear elastic fibers in an

elastoplastic matrix with isotropic or kinematic hardening. The reduced constitutive relations are given in

detail for both the uncoupled model and the coupled model in the only nonlinear constituent, the matrix.

Elastoplasticity with isotropic hardening. For isotropic hardening, the internal variables are the plastic

strain and b reduces to the cumulated plastic strain p. The stored energy is a function wpðpÞ. The force Aan

reduces to the stress r, whereas the force Ab reduces to �RðpÞ defined in (8). The force potential w is the
limit as n goes to þ1 of the potential (9)
wðrÞ ¼ 0; if req 6RðpÞ; þ1 otherwise; ð55Þ

and the exact complementary law reads
_eean ¼ 3

2
_pp
s

req

; _pp ¼ 0 if req < RðpÞ; _ppP 0 if req ¼ RðpÞ: ð56Þ
The evolution equations for the uncoupled model are, for each mode k ¼ 1; . . . ;M
sk ¼ 2Gðek � eank Þ; jskj6RðpkÞ;

_eeank ¼ 3

2
_ppk

sk
RðpkÞ

; _ppk ¼
0 if jskj < RðpkÞ;
P 0 otherwise:

� 9=
; ð57Þ
The evolution equations for the coupled model are, for each mode k ¼ 1; . . . ;M
sk ¼ 2Gðek � eank Þ;
PM

k¼1 jskj
2

� �1=2
6RðpÞ

_eeank ¼ 3

2
_pp

sk
RðpÞ ; _pp ¼ 0 if

PM
k¼1 jskj

2
� �1=2

< RðpÞ;
P 0 otherwise:

(
9>>>=
>>>;

ð58Þ
In the uncoupled model the M generalized stresses sk are subject to M different yield conditions depending
on M different plastic multipliers pk, whereas in the coupled model there is only one yield condition and

only one plastic multiplier p.
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Elastoplasticity with linear kinematic hardening. In this case, the only internal variable is the plastic strain

ean (no b). The stored energy for the elastoplastic phase reads
wanðeanÞ ¼ 1

2
Hean : ean: ð59Þ
The anelastic force is Aan ¼ r� X with X ¼ Hean. The force potential w is the limit as n goes to þ1 of the

potential (9)
wðAanÞ ¼ 0 if Aan
eq � r0 6 0; þ1 otherwise; ð60Þ
and the exact complementary law reads
_eean ¼ 3

2
_pp
Aan

Aan
eq

; _pp ¼ 0 if Aan
eq � r0 < 0; _ppP 0 if Aan

eq ¼ r0: ð61Þ
The evolution equations for the uncoupled model are, for each mode k ¼ 1; . . . ;M
sk ¼ 2Gðek � eank Þ; xk ¼ Heank ; jsk � xkj6r0;

_eeank ¼ 3

2
_ppk

sk � xk
jsk � xkj

; _ppk ¼
0 if jsk � xkj < r0;
P 0 otherwise:

� 9=
; ð62Þ
The evolution equations for the coupled model are, for each mode k ¼ 1; . . . ;M
sk ¼ 2Gðek � eank Þ; xk ¼ Heank ;
PM

k¼1 jsk � xkj2
� �1=2

6 r0;

_eeank ¼ 3

2
_pp
sk � xk
r0

; _pp ¼ 0 if
PM

k¼1 jsk � xkj2
� �1=2

< r0;

P 0 otherwise:

(
9>>>=
>>>;

ð63Þ
As in the case of isotropic hardening the uncoupled model involves M different yield conditions and M
different plastic multipliers pk, whereas the coupled model has only one yield condition and one plastic

multiplier p.
5. Examples

The relative merits of the above models, TFA, uncoupled NTFA and coupled NTFA, are assessed by

comparison with full numerical simulation of the response of the r.v.e. performed by a method based on

fast Fourier transforms (Moulinec and Suquet, 1998; Michel et al., 1999). All the examples presented in this

section pertain to two-phase composites comprised of linear elastic fibers with identical circular cross

section embedded in a nonlinear elastoplastic and hardening matrix.

5.1. Configurations and material data

Three typical arrangements of the fibers are considered (Fig. 1), two hexagonal configurations with fiber

volume fractions cf ¼ 0:25 and cf ¼ 0:50 and a configuration where 64 fibers are arranged randomly

(subject to periodicity conditions and impenetrability conditions) in a square cell with volume fraction

cf ¼ 0:25.
Three typical hardening laws are used in the analysis, linear isotropic hardening, nonlinear isotropic

hardening and linear kinematic hardening. The material data are different for each case
Matrix with linear isotropic hardening. Matrix yield stress: req 6 r0 þ hp.
Fibers : Ef ¼ 414 GPa; mf ¼ 0:19;
Matrix : Em ¼ 99:5 GPa; mm ¼ 0:3; r0 ¼ 510 MPa; h ¼ 5100 MPa:

�
ð64Þ



Fig. 1. Microstructures used in the comparison between the reduced models and exact computations: (a) Hexagonal cell, volume

fraction of fibers¼ 0.25 (discretization 125· 217 pixels); (b) hexagonal cell, volume fraction of fibers¼ 0.5 (discretization 125· 217
pixels); (c) random arrangement of fibers, volume fraction of fibers¼ 0.25 (discretization 1215· 1215 pixels).
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Matrix with nonlinear isotropic hardening. Matrix yield stress: req 6 r0 þ hpm.
Fibers : Ef ¼ 400 GPa; mf ¼ 0:2
Matrix : Em ¼ 75 GPa; mm ¼ 0:3 GPa; r0 ¼ 75 MPa; h ¼ 416:5 MPa; m ¼ 0:3895:

�
ð65Þ
Matrix with linear kinematic hardening. Matrix yield stress: ðr� X Þeq 6 r0; X ¼ Hean.
Fibers : Ef ¼ 414 GPa; mf ¼ 0:19;
Matrix : Em ¼ 99:5 GPa; mm ¼ 0:3; r0 ¼ 510 MPa; H ¼ 2400 MPa:

�
ð66Þ
5.2. Loading

The macroscopic stress applied to the r.v.e is imposed in a fixed direction in stress space
�rr ¼ �rrðtÞR0: ð67Þ

The loading is applied by increasing incrementally the ‘‘control parameter’’ �ee : R0. In other words, the

direction of overall stress is imposed, the magnitude of the overall strain in this direction is the control

parameter, the magnitude of the stress �rrðtÞ and the components of the overall strain in the directions

perpendicular to R0 are outputs of the computation. The control parameter can be increased monotonically

(in which case it plays the role of an artificial time) or cycled. The results obtained for the stress–strain

relations are plotted in a diagram ð�rr;�ee : R0Þ.
In most of the examples shown here, four different stress states were considered
Rð1Þ ¼ e1 � e1; Rð2Þ ¼ e1 � e2 þ e2 � e1; Rð3Þ ¼ Rð1Þ þ 1

2
Rð2Þ; Rð4Þ ¼ Rð1Þ þ Rð2Þ: ð68Þ
5.3. Plastic modes

The modes lðkÞ have to be specified. Their choice is left to the user and is a keypoint in the accuracy of

the method. In the examples presented below they were chosen to be actual plastic strain fields in the
composite under certain loadings. More specifically, the modes were determined numerically by simulating

the response of the composite along monotone loading paths in the space of macroscopic stresses corre-
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sponding to uniaxial tension and pure shear, respectively, in (67), i.e. R0 being either Rð1Þ or Rð2Þ. The

response of the composite was computed ‘‘exactly’’ (up to numerical accuracy). The plastic modes lðkÞ,

k ¼ 1; 2 were taken to be the plastic strain fields eanðxÞ when �ee : RðkÞ ¼ 5%. This relatively high value of the

strain corresponds to a fully developed plastic strain field. More modes could have been added to the
analysis (at the expense of additional internal variables) by taking plastic strain fields at intermediate values

of �ee : RðkÞ.

For simplicity, we restricted ourself to two modes only (the resulting constitutive relations for the

composite can therefore be expressed in terms of only two internal scalar variables) in each of the nine cases

investigated (three different configurations, three different behaviors). The support of the modes were

contained in the matrix only. Each mode has four independent components, three in-plane components and

one component in the direction perpendicular to the plane. The four different components of the mode lð1Þ

for the hexagonal array at a fiber volume fraction of 0.25 are shown in Fig. 2. In Fig. 3 two different
components of the modes lð1Þ and lð2Þ for the random configuration are shown. As can be seen from these

figures the modes are fairly inhomogeneous. In our case the elastoplastic problem was solved using a

method based on fast Fourier transforms in generalized plane strains (Michel et al., 1999), but any other

computational method could have been used.

It results from this construction that the modes depend on the microstructure of the composite and on

the behavior of the matrix.
5.4. Discussion of the results

Monotone and cyclic loadings were considered.

Monotone loadings. The predictions of the different models (TFA, uncoupled NTFA, coupled NTFA)

are shown in Figs. 4–6 obtained with the following data. Fig. 4 corresponds to the hexagonal cell with 25%
of fibers and a matrix with linear isotropic hardening. Fig. 5 corresponds to the random configuration with

25% of fibers and a matrix with nonlinear isotropic hardening. Fig. 6 corresponds to the hexagonal cell with

50% of fibers and a matrix with nonlinear isotropic hardening. The TFA was implemented with two

subdomains, the matrix and the fibers (called the ‘‘two-point’’ averaging approach in Fish et al., 1997), and

one tensorial internal variable (uniform plastic strain in the matrix) with three independent components.

The uncoupled NTFA and of the coupled NTA were implemented with two modes in the matrix (two scalar

internal variables). The result of an ‘‘exact’’ computation (up to numerical errors) performed by a com-

putational method based on FFT (Moulinec and Suquet, 1998) is also shown on these figures.
Fig. 2. Hexagonal cell, cf ¼ 0:25. Matrix with nonlinear isotropic hardening. The four components of the mode lð1Þ (corresponding to

uniaxial tension) are shown: (a) lð1Þ
11 ; (b) l

ð1Þ
22 ; (c) l

ð1Þ
12 and (d) lð1Þ

33 .



Fig. 3. Random configuration. Matrix with nonlinear isotropic hardening. Two components of the modes lð1Þ and lð2Þ are shown:

(a) lð1Þ
22 and (b) lð2Þ

12 .
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Fig. 4. Hexagonal cell, cf ¼ 0:25. Isotropic nonlinear hardening. Predictions of the TFA (dotted lines), uncoupled NTFA (long dash),

coupled NTFA (short dashed) and exact results (solid lines): (a) loading along Rð1Þ and Rð2Þ and (b) loading along Rð3Þ and Rð4Þ (see (67)

and (68) for the definition of the loading).
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The predictions of the TFA in its original form (only two domains) are seen to be unrealistic for all
configurations and all matrix behaviors. This was expected from other results presented in the literature, as

already mentioned.

The curves on the left hand side of the figures correspond precisely to the loadings Rð1Þ and Rð2Þ from

which the modes lð1Þ and lð2Þ were taken. The agreement with the exact result is very good, not only at the

strain where the modes were extracted (5%), but also in the whole range of strains considered. The curves

on the right-hand side of the figures correspond to the loadings Rð3Þ and Rð4Þ which were not used in the

determination of the plastic modes. It is seen that the coupled theory is in better agreement with the exact

results than the uncoupled theory.



0.0 0.01 0.02 0.03 0.04 0.05
0

50

100

150

200

250

300

350

400

:
0

1

2

TFA

coupled and uncoupled NTFA

exact

0.0 0.01 0.02 0.03 0.04 0.05
0

50

100

150

200

250

300

350

400

:
0

3

4

TFA

uncoupled NTFA

coupled NTFA

exact

(a) (b)

Fig. 5. Hexagonal cell, cf ¼ 0:5. Isotropic nonlinear hardening. Predictions of the TFA (dotted lines), uncoupled NTFA (long dash),

coupled NTFA (short dashed) and exact results (solid lines): (a) loading along Rð1Þ and Rð2Þ and (b) loading along Rð3Þ and Rð4Þ (see (67)

and (68) for the definition of the loading).
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Fig. 6. Random configuration. Isotropic nonlinear hardening. Predictions of the TFA (dotted lines), uncoupled NTFA (long dash),

coupled NTFA (short dashed) and exact results (solid lines): (a) Loading along Rð1Þ and Rð2Þ and (b) loading along Rð3Þ and Rð4Þ.
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Cyclic loadings. Finally the predictions of the coupled model (the most successful under monotone
loading) are shown in Fig. 7 for the random configuration for a matrix with isotropic hardening (left)

and kinematic hardening (right). Both parts of figures show a quite satisfactory agreement between the

model and the full simulations, except in the reloading portions of the curves. The exact curve is

smoother, corresponding to a stronger overall kinematic hardening, which, however, affects only a small

part of the response. It is our expectation (but remains to be checked) that the agreement could be

improved by increasing the number of modes considered in the analysis, rather than by changing the

modes.
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Fig. 7. Random configuration. Cyclic loading. Loading along Rð1Þ, Rð2Þ and Rð3Þ. Predictions of the coupled NTFA (dashed lines) and

exact results (solid lines): (a) matrix with isotropic nonlinear hardening and (b) matrix with kinematic linear hardening.
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6. Conclusion

An approximate model for describing the overall hardening of elastoplastic or elastoviscoplastic com-

posites has been described. The main feature of the model is that it makes use of nonuniform transformation

fields, generalizing the idea of Dvorak (1992). The implementation of the method consists in two different

steps

• First, plastic modes representative of the plastic strain fields expected at the microscopic level, have to be
determined. This can be done numerically by simulating the plastic fields which develop at the micro-

scopic level under well-chosen loadings.

• Second, constitutive equations for the generalized components of the plastic strains (for each plastic

mode) have to be derived. This can be done in uncoupled or coupled form. Comparisons with numerical

simulations show that the coupled model is more accurate.

The advantages of the method is that, if the modes are suitably chosen, the number of internal variables

of the model is kept low whereas the prediction is accurate. On the other hand, the modes have to be pre-
computed and their choice depend on the problem at hand (configuration, loading cases).
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